资源类型

期刊论文 84

会议视频 1

年份

2023 9

2022 12

2021 8

2020 7

2019 10

2018 4

2017 7

2016 3

2014 3

2013 4

2012 1

2011 1

2010 2

2009 1

2008 1

2007 2

2005 1

2004 1

2003 1

2002 1

展开 ︾

关键词

增材制造 4

植物生长调节剂 2

水泥砂浆 2

HDPE 1

Inconel 718合金 1

MnAl 1

Nd-Fe-B磨削油泥 1

PP 1

Rosenthal方程 1

TA乳粉 1

三十烷醇 1

交流位置伺服系统 1

再生混凝土 1

再生烧结磁体 1

力学性能 1

压缩-扭转性能 1

压缩诱导扭转柔顺机构 1

原生混凝土 1

可靠度 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1301-1314 doi: 10.1007/s11709-022-0883-4

摘要: Thermal energy storage recycled powder mortar (TESRM) was developed in this study by incorporating paraffin/recycled brick powder (paraffin/BP) composite phase change materials (PCM). Fourier transform infrared and thermogravimetric analysis results showed that paraffin/BP composite PCM had good chemical and thermal stability. The onset melting temperature and latent heat of the composite PCM were 46.49 °C and 30.1 J·g−1. The fresh mortar properties and hardened properties were also investigated in this study. Paraffin/BP composite PCM with replacement ratio of 0%, 10%, 20%, and 30% by weight of cement were studied. The results showed that the static and dynamic yield stresses of TESRM were 699.4% and 172.9% higher than those of normal mortar, respectively. The addition of paraffin/BP composite PCM had a positive impact on the mechanical properties of mortar at later ages, and could also reduce the dry shrinkage of mortar. The dry shrinkage of TESRM had a maximum reduction about 26.15% at 120 d. The thermal properties of TESRM were better than those of normal mortar. The thermal conductivity of TESRM was 36.3% less than that of normal mortar and the heating test results showed that TESRM had good thermal energy storage performance.

关键词: recycled powder mortar     recycled brick powder     thermal energy storage     paraffin     phase change material    

矿物质粉体对砂浆及混凝土Cl- 渗透性的影响

冯乃谦,牛全林,封孝信

《中国工程科学》 2002年 第4卷 第2期   页码 69-73

摘要:

研究了不同水胶比、不同矿物质粉体掺量的砂浆和混凝土,经标准养护至56天、90天时的导电量。在相同水胶比和相同矿物质粉体掺量下,混凝土的导电量远低于砂浆的导电量。含矿物质粉体的砂浆及混凝土的导电量均低于基准砂浆及混凝土的导电量。导电量随水胶比的降低而降低,也随龄期的增长而降低。

关键词: 矿物质粉体     砂浆     混凝土     导电量    

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 158-168 doi: 10.1007/s11709-016-0374-6

摘要: A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

关键词: mortar-aggregate interface     push-out test     elevated temperatures     modeled concrete (MC)     modeled recycled aggregate concrete (MRAC)    

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 271-283 doi: 10.1007/s11709-022-0896-z

摘要: Textile reinforced mortar is widely used as an overlay for the repair, rehabilitation, and retrofitting of concrete structures. Recently, textile reinforced concrete has been identified as a suitable lining material for improving the durability of existing concrete structures. In this study, we developed a textile-reinforced mortar mix using river sand and evaluated the different characteristics of the textile-reinforced mortar under various exposure conditions. Studies were carried out in two phases. In the first phase, the pullout strength, temperature resistance, water absorption, and compressive and bending strength values of three different textile-reinforced mortar mixes with a single type of textile reinforcement were investigated. In the second phase, the chemical resistance of the mix that showed the best performance in the abovementioned tests was examined for use as an overlay for a concrete substrate. Investigations were performed on three different thicknesses of the textile reinforced mortar overlaid on concrete specimens that were subjected to acidic and alkaline environments. The flexural responses and degradations of the textile reinforced mortar overlaid specimens were examined by performing bending tests. The experimental findings indicated the feasibility of using textile reinforced mortar as an overlay for durable concrete construction practices.

关键词: textile reinforced mortar     bending tests     acid and alkaline environment     concrete overlay    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 302-308 doi: 10.1007/s11709-008-0050-6

摘要: A study is conducted on the seismic behavior of one natural concrete frame and two recycled concrete frames with 100% recycled coarse aggregate whose scales are 1:2 entirely, and a comparative study is conducted under low-reversed cyclic lateral loading and different vertical loading. This work aims to estimate the failure mechanism, hysteresis loops, displacement ductility, deterioration of strength and stiffness and energy dissipation of recycled concrete frames under low-reversed cyclic loading as well as the influence of different vertical loading. Analysis on the basis of the experiment proves that it is entirely feasible to apply recycled concrete to practical engineering for the sake of its good seismic behaviors. Theoretical base is provided for further study and practical application of recycled concrete structure.

关键词: different     aggregate     stiffness     practical application     % recycled    

Chloride diffusion in concrete with carbonated recycled coarse aggregates under biaxial compression

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 637-648 doi: 10.1007/s11709-023-0902-0

摘要: Chloride attack on concrete structures is affected by the complex stress state inside concrete, and the effect of recycled aggregates renders this process more complex. Enhancing the chloride resistance of recycled concrete in a complex environment via carbonization facilitates the popularization and application of recycled concrete and alleviates the greenhouse effect. In this study, the chloride ion diffusion and deformation properties of recycled concrete after carbonization are investigated using a chloride salt load-coupling device. The results obtained demonstrate that the chloride ion diffusivity of recycled concrete first decreases and then increases as the compressive load increases, which is consistent with the behavior of concrete, in that it first undergoes compressive deformation, followed by crack propagation. Carbonation enhances the performance of the recycled aggregates and reduces their porosity, thereby reducing the chloride diffusion coefficient of the recycled concrete under different compressive load combinations. The variation in the chloride ion diffusivity of the carbonized recycled aggregate concrete with the load is consistent with a theoretical formula.

关键词: recycled concrete     carbonated recycled coarse aggregate     biaxial compression     chloride diffusion     stress level    

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregate

Jingwei YING; Feiming SU; Shuangren CHEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第3期   页码 302-315 doi: 10.1007/s11709-022-0803-7

摘要: The purpose of this study is to reveal the service performance of recycled aggregate concrete (RAC) components for different values of water−cement ratio and replacement rate of recycled coarse aggregate (RCA). Generally, the concrete strength decreases with the increase of the replacement rate of RCA, in order to meet the strength requirements when changing the replacement rate of RCA, it is necessary to change the water−cement ratio at the same time. Therefore, the axial compressive strengths of prism with 25 mix proportions, the short-term mechanical properties and long-term deformation properties of reinforced concrete beams were tested respectively by changing water−cement ratio and RCA replacement rate. The bearing capacity and the strain nephogram of samples under different loads were obtained using the Digital Image Correlation (DIC) method, and a self-made gravity loading experimental device was used for long-term deformation investigation. Results showed that the damage pattern of RAC was the same as that of natural aggregate concrete (NAC), but the brittleness was more pronounced. The brittleness of concrete before failure can be reduced more effectively by adjusting the replacement rate of RCA than by adjusting the water−cement ratio. The water−cement ratio has an evident influence on the axial compressive strength and early creep of concrete, while the replacement rate of RCA has a remarkable effect on the long-term deformation of the concrete beams.

关键词: recycled concrete     beam     the replacement rate of recycled coarse aggregate     water–cement ratio     digital image correlation    

Analysis of Sydney’s recycled water schemes

Zhuo CHEN, Huu Hao NGO, Wenshan GUO, Xiaochang WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 608-615 doi: 10.1007/s11783-012-0468-x

摘要: Recycled water provides a viable opportunity to partially supplement fresh water supplies as well as substantially alleviate environmental loads. Currently, thousands of recycled water schemes have been successfully conducted in a number of countries and Sydney is one of the leading cities, which has made massive effort to apply water reclamation, recycling and reuse. This study aims to make a comprehensive analysis of recycled water schemes in Sydney for a wide range of end uses such as landscape irrigation, industrial process uses and residential uses (e.g., golf course irrigation, industrial cooling water reuse, toilet flushing and clothes washing etc.). For each representative recycled water scheme, this study investigates the involved wastewater treatment technologies, the effluent quality compared with specified guideline values and public attitudes toward different end uses. Based on these obtained data, multi criteria analysis (MCA) in terms of risk, cost-benefit, environmental and social aspects can be performed. Consequently, from the analytical results, the good prospects of further expansion and exploration of current and new end uses were identified toward the integrated water planning and management. The analyses could also help decision makers in making a sound judgment for future recycled water projects.

关键词: recycled water schemes     end use     water quality     public attitudes     integrated water planning and management    

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 725-740 doi: 10.1007/s11709-018-0510-6

摘要: A study on the punching shear behavior of 8 slabs with recycled aggregate concrete (RAC) was carried out. The two main factors considered were the recycled coarse aggregate (RCA) replacement percentage and the steel fibre volumetric ratio. The failure pattern, load-displacement curves, energy consumption and the punching shear capacity of the slabs were intensively investigated. It was concluded that the punching shear capacity, ductility and energy consumption decreased with the increase of RCA replacement percentage. Research findings indicated that the incorporation of steel fibres could not only improve the energy dissipation capacity and the punching shear capacity of the slab, but also effectively improve the integrity of the slab tension surface and thereby changing the trend from typical punching failure pattern to bending-punching failure pattern. On the basis of the test, the punching shear capacity formula of RAC slabs with and without steel fibres was proposed and discussed.

关键词: recycled aggregate concrete     steel fibres     slab     punching shear     recycled coarse aggregates replacement percentage    

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 817-842 doi: 10.1007/s11709-022-0844-y

摘要: To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

关键词: steel reinforced recycled concrete     CFRP strips     short columns     axial compression behavior     recycled aggregate concrete    

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 580-592 doi: 10.1007/s11465-021-0633-7

摘要: 3D metal printing process has attracted increasing attention in recent years due to advantages, such as flexibility and rapid prototyping. This study aims to investigate the orientation effect of electropolishing characteristics on different surfaces of 316L stainless steel fabricated by laser powder bed fusion (L-PBF), considering that the rough surface of 3D printed parts is a key factor limiting its applications in the industry. The electropolishing characteristics on the different surfaces corresponding to the building orientation in selective laser melting are studied. Experimental results show that electrolyte temperature has critical importance on the electropolishing, especially for the vertical direction to the layering plane. The finish of electropolished surfaces is affected by the defects generated during L-PBF process. Thus, the electropolished vertical surface has higher surface roughness Sa than the horizontal surface. The X-ray photoelectron spectroscopy spectra show that the electropolished horizontal surface has higher Cr/Fe element ratio than the vertical surface. The electropolished horizontal surface presents higher corrosion resistance than the vertical surface by measuring the anodic polarization curves and fitting the equivalent circuit of experimental electrochemical impedance spectroscopy.

关键词: electropolishing     laser powder bed fusion     316L stainless steel     corrosion resistance     microstructure    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

Research on recycled concrete and its utilization in building structures in China

Jianzhuang XIAO, Tao DING

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 215-226 doi: 10.1007/s11709-013-0212-z

摘要: Large quantities of construction and demolition (C&D) building waste are being generated as a result of rapid urbanization and natural disasters in China. An increasing awareness of environmental protection is escalating C&D waste disposal concerns. This paper presents a brief introduction to current shaking table test research in China on structures built with recycled aggregate concrete (RAC). Test structures include a cast-in situ frame model, a precast frame model and a block masonry building. The test results prove that it is feasible to use RAC as a structural material in seismic areas, with recommended modifications and proper design, especially in low-rise structures. This paper also presents several successful applications of RAC in civil and structural engineering projects in China, which will serve to promote RAC as a global ecological structural material.

关键词: recycled aggregate concrete (RAC)     structural material     shaking table tests     building structure    

标题 作者 时间 类型 操作

Experimental study and assessment of thermal energy storage mortar with paraffin/recycled brick powder

Luchen HAO; Jianzhuang XIAO; Wanzhi CAO; Jingting SUN

期刊论文

矿物质粉体对砂浆及混凝土Cl- 渗透性的影响

冯乃谦,牛全林,封孝信

期刊论文

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

期刊论文

Experimental investigation on concrete overlaid with textile reinforced mortar: Influences of mix, temperature

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文

Experimental research on seismic behavior of recycled concrete frame under varying cyclic loading

SUN Yuedong, XIAO Jianzhuang, ZHOU Deyuan

期刊论文

Chloride diffusion in concrete with carbonated recycled coarse aggregates under biaxial compression

期刊论文

Long term performance of recycled concrete beams with different water–cement ratio and recycled aggregate

Jingwei YING; Feiming SU; Shuangren CHEN

期刊论文

Analysis of Sydney’s recycled water schemes

Zhuo CHEN, Huu Hao NGO, Wenshan GUO, Xiaochang WANG

期刊论文

Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres

Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA

期刊论文

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

期刊论文

Orientation effect of electropolishing characteristics of 316L stainless steel fabricated by laser powder

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

Research on recycled concrete and its utilization in building structures in China

Jianzhuang XIAO, Tao DING

期刊论文